Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans.
نویسندگان
چکیده
BACKGROUND & AIMS The Helicobacter pylori toxin vacuolating cytotoxin (VacA) promotes gastric colonization, and its presence (VacA(+)) is associated with more-severe disease. The exact mechanisms by which VacA contributes to infection are unclear. We previously found that limited exposure to VacA induces autophagy of gastric cells, which eliminates the toxin; we investigated whether autophagy serves as a defense mechanism against H pylori infection. METHODS We investigated the effect of VacA on autophagy in human gastric epithelial cells and primary gastric cells from mice. Expression of p62, a marker of autophagy, was also assessed in gastric tissues from patients infected with toxigenic (VacA(+)) or nontoxigenic strains. We analyzed the effect of VacA on autophagy in peripheral blood monocytes obtained from subjects with different genotypes of ATG16L1, which regulates autophagy. We performed genotyping for ATG16L1 in 2 cohorts of infected and uninfected subjects. RESULTS Prolonged exposure of human gastric epithelial cells and mouse gastric cells to VacA disrupted induction of autophagy in response to the toxin, because the cells lacked cathepsin D in autophagosomes. Loss of autophagy resulted in the accumulation of p62 and reactive oxygen species. Gastric biopsy samples from patients infected with VacA(+), but not nontoxigenic strains of H pylori, had increased levels of p62. Peripheral blood monocytes isolated from individuals with polymorphisms in ATG16L1 that increase susceptibility to Crohn's disease had reduced induction of autophagy in response to VacA(+) compared to cells from individuals that did not have these polymorphisms. The presence of the ATG16L1 Crohn's disease risk variant increased susceptibility to H pylori infection in 2 separate cohorts. CONCLUSIONS Autophagy protects against infection with H pylori; the toxin VacA disrupts autophagy to promote infection, which could contribute to inflammation and eventual carcinogenesis.
منابع مشابه
Vacuolating Cytotoxin of Helicobacter pylori
Vacuolating cytotoxin (VacA) is one of the most important virulence factors of H. pylori (Hp), which isthe only toxic protein that is secreted from Hp cell into the culture supernatant. The effects of VacA oneukaryotic systems is the subject of many previous and on going research studies. Intracellular targetsfor this toxin include: late endosomal and lysosomal compartments, m...
متن کاملCloning and Expression of the Heterogenic Vacuolating Cytotoxin From an Iranian Helicobacter pylori Strain
متن کامل
Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin.
Colonization of the mucosa of the stomach and the duodenum by Helicobacter pylori is the major cause of acute and chronic gastroduodenal pathologies in humans. Duodenal ulcer formation strongly correlates with the expression of an antigen (CagA) that is usually coeexpressed with the vacuolating cytotoxin (VacA), a protein that causes ulceration in the stomach of mice. However, the relationship ...
متن کاملVacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection.
Helicobacter pylori, the causative agent of gastritis and ulcer disease in humans, secretes a toxin called VacA (vacuolating cytotoxin) into culture supernatants. VacA was initially characterized and purified on the basis of its ability to induce the formation of intracellular vacuoles in tissue culture cells. H. pylori strains possessing different alleles of vacA differ in their ability to exp...
متن کاملBinding of the Helicobacter pylori vacuolating cytotoxin to target cells.
The vacuolating cytotoxin of Helicobacter pylori, VacA, enters the cytoplasm of target cells and causes vacuolar degeneration by interfering with late stages of endocytosis. By using indirect immunofluorescence and flow cytometry, we have demonstrated that VacA binds to specific high-affinity cell surface receptors and that this interaction is necessary for cell intoxication.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gastroenterology
دوره 142 5 شماره
صفحات -
تاریخ انتشار 2012